Solveeit Logo

Question

Question: The equation \({{x}^{n}}+p{{x}^{2}}+qx+r=0\), where \(n\ge 5\) & \(r\ne 0\) has roots \({{\alpha }_{...

The equation xn+px2+qx+r=0{{x}^{n}}+p{{x}^{2}}+qx+r=0, where n5n\ge 5 & r0r\ne 0 has roots α1{{\alpha }_{1}}, α2{{\alpha }_{2}}, α3{{\alpha }_{3}},……, αn{{\alpha }_{n}}. Denoting i=1nαik\sum\limits_{i=1}^{n}{\alpha _{i}^{k}} by Sk{{S}_{k}}, then
(a) S2=0{{S}_{2}}=0, Sn=nr{{S}_{n}}=nr.
(b) S2=0{{S}_{2}}=0, Sn=nr{{S}_{n}}=-nr.
(c) S2=1{{S}_{2}}=1, Sn=nr{{S}_{n}}=-nr.
(d) S2=1{{S}_{2}}=1, Sn=nr{{S}_{n}}=nr.

Explanation

Solution

We start solving the problem by the finding the sum of the roots of the given equation using the fact the sum of the roots 1×coefficient of xn1coefficient of xn\dfrac{-1\times \text{coefficient of }{{x}^{n-1}}}{\text{coefficient of }{{x}^{n}}}, which will be the value of S1{{S}_{1}}. We use this value and the fact that α1α2+α1α3+.............+αn2αn+αn1αn=coefficient of xn2coefficient of xn{{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}}=\dfrac{\text{coefficient of }{{x}^{n-2}}}{\text{coefficient of }{{x}^{n}}} to find the value of S2{{S}_{2}}. We then substitute each root into the given equation one by one and add all of them at once to get the relation between S1{{S}_{1}}, S2{{S}_{2}}, Sn{{S}_{n}} and r. We then make necessary substitutions and calculations to get the required value of Sn{{S}_{n}}.

Complete step-by-step solution
According to the problem, we are given that α1{{\alpha }_{1}}, α2{{\alpha }_{2}}, α3{{\alpha }_{3}},……, αn{{\alpha }_{n}} are the roots of xn+px2+qx+r=0{{x}^{n}}+p{{x}^{2}}+qx+r=0, where n5n\ge 5 & r0r\ne 0. We need to find the values of S2{{S}_{2}}, Sn{{S}_{n}} if Sk=i=1nαik{{S}_{k}}=\sum\limits_{i=1}^{n}{\alpha _{i}^{k}}.
We know that the sum of the roots α1+α2+α3+......+αn=1×coefficient of xn1coefficient of xn{{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}+......+{{\alpha }_{n}}=\dfrac{-1\times \text{coefficient of }{{x}^{n-1}}}{\text{coefficient of }{{x}^{n}}}.
α1+α2+α3+......+αn=1×01\Rightarrow {{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}+......+{{\alpha }_{n}}=\dfrac{-1\times 0}{1}.
α1+α2+α3+......+αn=0\Rightarrow {{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}+......+{{\alpha }_{n}}=0 ---(1).
Now, let us find the value of S1{{S}_{1}}.
We have S1=i=1nαi=α1+α2+α3+......+αn{{S}_{1}}=\sum\limits_{i=1}^{n}{{{\alpha }_{i}}}={{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}+......+{{\alpha }_{n}}.
From equation (1), we get
S1=0\Rightarrow {{S}_{1}}=0 ---(2).
Now, let us find the value of S2{{S}_{2}}.
S2=i=1nαi2=α12+α22+α32+......+αn2{{S}_{2}}=\sum\limits_{i=1}^{n}{\alpha _{i}^{2}}=\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+......+\alpha _{n}^{2} ---(3).
We know that α12+α22+α32+......+αn2=(α1+α2+α3+......+αn)22(α1α2+α1α3+.............+αn2αn+αn1αn)\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+......+\alpha _{n}^{2}={{\left( {{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}+......+{{\alpha }_{n}} \right)}^{2}}-2\left( {{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}} \right).
From equation (1), we get
α12+α22+α32+......+αn2=(0)22(α1α2+α1α3+.............+αn2αn+αn1αn)\Rightarrow \alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+......+\alpha _{n}^{2}={{\left( 0 \right)}^{2}}-2\left( {{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}} \right).
α12+α22+α32+......+αn2=2(α1α2+α1α3+.............+αn2αn+αn1αn)\Rightarrow \alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+......+\alpha _{n}^{2}=-2\left( {{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}} \right) ---(4).
We know that the α1α2+α1α3+.............+αn2αn+αn1αn=coefficient of xn2coefficient of xn{{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}}=\dfrac{\text{coefficient of }{{x}^{n-2}}}{\text{coefficient of }{{x}^{n}}}.
α1α2+α1α3+.............+αn2αn+αn1αn=01\Rightarrow {{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}}=\dfrac{0}{1}.
α1α2+α1α3+.............+αn2αn+αn1αn=0\Rightarrow {{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}+.............+{{\alpha }_{n-2}}{{\alpha }_{n}}+{{\alpha }_{n-1}}{{\alpha }_{n}}=0. We substitute this in equation (5).
α12+α22+α32+......+αn2=2(0)\Rightarrow \alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+......+\alpha _{n}^{2}=-2\left( 0 \right).
α12+α22+α32+......+αn2=0\Rightarrow \alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+......+\alpha _{n}^{2}=0. We substitute this in equation (3).
So, we get S2=0{{S}_{2}}=0 ---(5).
Now, we know that the roots α1{{\alpha }_{1}}, α2{{\alpha }_{2}}, α3{{\alpha }_{3}},……, αn{{\alpha }_{n}} satisfy the given equation xn+px2+qx+r=0{{x}^{n}}+p{{x}^{2}}+qx+r=0.
Let us substitute each of the roots in the equation xn+px2+qx+r=0{{x}^{n}}+p{{x}^{2}}+qx+r=0.
On substituting α1{{\alpha }_{1}}, we get (α1)n+p(α1)2+q(α1)+r=0{{\left( {{\alpha }_{1}} \right)}^{n}}+p{{\left( {{\alpha }_{1}} \right)}^{2}}+q\left( {{\alpha }_{1}} \right)+r=0.
α1n+pα12+qα1+r=0\Rightarrow \alpha _{1}^{n}+p\alpha _{1}^{2}+q{{\alpha }_{1}}+r=0 ---(6).
On substituting α2{{\alpha }_{2}}, we get (α2)n+p(α2)2+q(α2)+r=0{{\left( {{\alpha }_{2}} \right)}^{n}}+p{{\left( {{\alpha }_{2}} \right)}^{2}}+q\left( {{\alpha }_{2}} \right)+r=0.
α2n+pα22+qα2+r=0\Rightarrow \alpha _{2}^{n}+p\alpha _{2}^{2}+q{{\alpha }_{2}}+r=0 ---(7).
.
.
.
.
On substituting αn{{\alpha }_{n}}, we get (αn)n+p(αn)2+q(αn)+r=0{{\left( {{\alpha }_{n}} \right)}^{n}}+p{{\left( {{\alpha }_{n}} \right)}^{2}}+q\left( {{\alpha }_{n}} \right)+r=0.
αnn+pαn2+qαn+r=0\Rightarrow \alpha _{n}^{n}+p\alpha _{n}^{2}+q{{\alpha }_{n}}+r=0 ---(8).
Let us add the equations (6), (7), (8), and the other similar equations we get on substituting the other roots.
So, we get i=1nαin+pi=1nαi2+qi=1nαi+i=1nr=0\sum\limits_{i=1}^{n}{\alpha _{i}^{n}}+p\sum\limits_{i=1}^{n}{\alpha _{i}^{2}}+q\sum\limits_{i=1}^{n}{{{\alpha }_{i}}}+\sum\limits_{i=1}^{n}{r}=0.
Sn+pS2+qS1+nr=0\Rightarrow {{S}_{n}}+p{{S}_{2}}+q{{S}_{1}}+nr=0.
From equations (2) and (5), we get
Sn+p(0)+q(0)+nr=0\Rightarrow {{S}_{n}}+p\left( 0 \right)+q\left( 0 \right)+nr=0.
Sn+0+0+nr=0\Rightarrow {{S}_{n}}+0+0+nr=0.
Sn+nr=0\Rightarrow {{S}_{n}}+nr=0.
Sn=nr\Rightarrow {{S}_{n}}=-nr.
So, we have found the values of S2{{S}_{2}} and Sn{{S}_{n}} as 0 and nr-nr.
\therefore The correct option for the given problem is (b).

Note: Whenever we get the quadratic equations, we need not always find the roots and do the squaring or sum. We can sometimes use the sum and product of the roots while solving this type of problem. We should make sure that the sum of the product of two roots, the sum of the product of three roots, etc is performed without any mistake. We can see that the sum of the squares of the roots of given equations is zero which is possible only if all the roots are zero but according to the problem it is given r0r\ne 0, which is the product of all the roots. So, this clearly tells us that the given equation doesn’t have any real roots.