Solveeit Logo

Question

Question: The equation to the straight line passing through the point \(\left( a \cos ^ { 3 } \theta , a \sin ...

The equation to the straight line passing through the point (acos3θ,asin3θ)\left( a \cos ^ { 3 } \theta , a \sin ^ { 3 } \theta \right) and perpendicular to the linexsecθ+ycosecθ=ax \sec \theta + y \operatorname { cosec } \theta = a is.

A

xcosθysinθ=acos2θx \cos \theta - y \sin \theta = a \cos 2 \theta

B

xcosθ+ysinθ=acos2θx \cos \theta + y \sin \theta = a \cos 2 \theta

C

xsinθ+ycosθ=acos2θx \sin \theta + y \cos \theta = a \cos 2 \theta

D

None of these

Answer

xcosθysinθ=acos2θx \cos \theta - y \sin \theta = a \cos 2 \theta

Explanation

Solution

xcosθysinθ=a(cos4θsin4θ)=acos2θx \cos \theta - y \sin \theta = a \left( \cos ^ { 4 } \theta - \sin ^ { 4 } \theta \right) = a \cos 2 \theta .