Solveeit Logo

Question

Mathematics Question on Hyperbola

The equation to the normal to the hyperbola x216y29=1\frac {x^2}{16}- \frac {y^2}{9}=1 at (4,0)(-4,0) is

A

2x - 3y = 1

B

x = 0

C

x = 1

D

y = 0

Answer

y = 0

Explanation

Solution

We know that, the equation of normal at the point (x1,y1)\left(x_{1}, y_{1}\right) to the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 is a2xx1+b2yy1=a2+b2\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2} Given equation is x216y29=1\frac{x^{2}}{16}-\frac{y^{2}}{9}=1 Here, a2=16,b2=9\,\,\,\,\,\,a^{2}=16,\,\, b^{2}=9 \therefore\,\,\, The equation of normal at the point (4,0)(-4,0) is 16x4+9y0=16+9\frac{16 x}{-4}+\frac{9 y}{0}=16+9 9y0=25+16x4\Rightarrow\,\,\,\,\, \frac{9 y}{0}=25+\frac{16 x}{4} 9y=0\Rightarrow \,\,\,\,\,\,9 y=0 y=0 \Rightarrow \,\,\,\,y=0