Solveeit Logo

Question

Question: The equation \(\theta = 2n\pi \pm \left( \frac{\pi}{2} - 2\theta \right) \Rightarrow \theta \pm 2\th...

The equation θ=2nπ±(π22θ)θ±2θ=2nπ±π2\theta = 2n\pi \pm \left( \frac{\pi}{2} - 2\theta \right) \Rightarrow \theta \pm 2\theta = 2n\pi \pm \frac{\pi}{2}is solvable for.

A

3θ=2nπ+π2θ=13(2nπ+π2)3\theta = 2n\pi + \frac{\pi}{2} \Rightarrow \theta = \frac{1}{3}\left( 2n\pi + \frac{\pi}{2} \right)

B

θ=2nππ2θ=(2nππ2)- \theta = 2n\pi - \frac{\pi}{2} \Rightarrow \theta = - \left( 2n\pi - \frac{\pi}{2} \right)

C

θ\theta

D

π\pi

Answer

θ\theta

Explanation

Solution

sinx+siny+sinz=3\sin x + \sin y + \sin z = - 3

x=y=z=3π2,x = y = z = \frac{3\pi}{2},

x,y,z[0,2π].x,y,z \in \lbrack 0,2\pi\rbrack.

Let sin2θ=cosθcosθ=cos(π22θ)\sin 2\theta = \cos\theta \Rightarrow \cos\theta = \cos\left( \frac{\pi}{2} - 2\theta \right). Then the given equation becomes

\Rightarrow,

where θ=2nπ±(π22θ)θ±2θ=2nπ±π2\theta = 2n\pi \pm \left( \frac{\pi}{2} - 2\theta \right) \Rightarrow \theta \pm 2\theta = 2n\pi \pm \frac{\pi}{2}, 3θ=2nπ+π2θ=13(2nπ+π2)3\theta = 2n\pi + \frac{\pi}{2} \Rightarrow \theta = \frac{1}{3}\left( 2n\pi + \frac{\pi}{2} \right)

For real, discriminant θ=2nππ2θ=(2nππ2)θπ- \theta = 2n\pi - \frac{\pi}{2} \Rightarrow \theta = - \left( 2n\pi - \frac{\pi}{2} \right)\theta\pi π6,π2,5π6\frac{\pi}{6},\frac{\pi}{2},\frac{5\pi}{6} 30o,90o,150o30^{o},90^{o},150^{o}

Also 22cos2θ=3cosθ2 - 2\cos^{2}\theta = 3\cos\theta

\Rightarrow cosθ=3±9+164=3±54\cos\theta = \frac{- 3 \pm \sqrt{9 + 16}}{4} = \frac{- 3 \pm 5}{4}. Thus cosθ=12=cos(π3)\cos\theta = \frac{1}{2} = \cos\left( \frac{\pi}{3} \right).