Question
Question: The equation \(\theta = 2n\pi \pm \left( \frac{\pi}{2} - 2\theta \right) \Rightarrow \theta \pm 2\th...
The equation θ=2nπ±(2π−2θ)⇒θ±2θ=2nπ±2πis solvable for.
A
3θ=2nπ+2π⇒θ=31(2nπ+2π)
B
−θ=2nπ−2π⇒θ=−(2nπ−2π)
C
θ
D
π
Answer
θ
Explanation
Solution
sinx+siny+sinz=−3
⇒ x=y=z=23π,
⇒ x,y,z∈[0,2π].
Let sin2θ=cosθ⇒cosθ=cos(2π−2θ). Then the given equation becomes
⇒,
where θ=2nπ±(2π−2θ)⇒θ±2θ=2nπ±2π, 3θ=2nπ+2π⇒θ=31(2nπ+2π)
For real, discriminant −θ=2nπ−2π⇒θ=−(2nπ−2π)θπ 6π,2π,65π 30o,90o,150o
Also 2−2cos2θ=3cosθ
⇒ cosθ=4−3±9+16=4−3±5. Thus cosθ=21=cos(3π).