Solveeit Logo

Question

Question: The equation \({\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}\)...

The equation k(x2+y2)x - y + k = 0{\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}} represents a real circle, if
A. k < 2 B. k > 2 C.|k| < 12 D. 0 < |K|  12  {\text{A}}{\text{. k < }}\sqrt 2 \\\ {\text{B}}{\text{. k > }}\sqrt 2 \\\ {\text{C}}{\text{.|k| < }}\dfrac{1}{{\sqrt 2 }} \\\ {\text{D}}{\text{. 0 < |K| }} \leqslant {\text{ }}\dfrac{1}{{\sqrt 2 }} \\\

Explanation

Solution

Hint: To check if the equation represents a circle, we transform the given circle equation into the general form of a circle. We then use the condition that represents a real circle to verify.

Complete step-by-step answer:
We know, for an equation x2+y2+2gx + 2fy + c = 0{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}} to represent a real circle, the condition is (g2+f2c)>0\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0.

Given equation k(x2+y2)x - y + k = 0{\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}
We divide the equation by k and compare it with the circle equation we get,
x2+y21kx - 1ky + 1 = 0{{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}
g = - 12k , f = - 12k , c = 1\Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}

To represent a circle, (g2+f2c)>0\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0 must hold true,

((12k)2+(12k)21)>0 14k2+14k21 > 0 12k21 > 0 12k2 > 1 1 > 2k2 12>k2 k| < 12  \Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\\ \Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\\ \Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\\ \Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\\ \Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\\ \Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\\ \Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\\

Hence, for the equation k(x2+y2)x - y + k = 0{\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}} represents a real circle if |k| < 12{\text{|k| < }}\dfrac{1}{{\sqrt 2 }}.
Option C is the right answer.

Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.