Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The equation 3sinx+cosx=4\sqrt{3}\, \sin \,x+\cos\,x = 4 has

A

only one solution

B

two solutions

C

infinitely many solutions

D

no solution

Answer

no solution

Explanation

Solution

Given, 3sinx+cosx=4\sqrt{3}\, \sin \,x+\cos\,x=4
2[32sinx+12cosx]=4\Rightarrow 2\left[\frac{\sqrt{3}}{2}\sin\,x+\frac{1}{2}\cos\,x\right]=4
sin(x+π6)=2(i)\Rightarrow \sin \left(x+\frac{\pi}{6}\right)=2 \ldots\left(i\right)
But sin(x+π6)1\sin \left(x+\frac{\pi}{6}\right) \le\,1
\therefore No soltuion exist
Alternative
From E (i)\left(i\right), sin(x+π6)=2\sin \left(x+\frac{\pi}{6}\right)=2

Let y=sin(x+π6)=2y=\sin \left(x+\frac{\pi}{6}\right)=2
It is clear from the graph two curves does not intersect