Solveeit Logo

Question

Question: The equation \({{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}\) has a real solution if, (a) \(a\in \left[...

The equation sin6x+cos6x=a2{{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}} has a real solution if,
(a) a[1,1]a\in \left[ -1,1 \right]
(b) a[1,12]a\in \left[ -1,-\dfrac{1}{2} \right]
(c) a[12,1][1,12]a\in \left[ \dfrac{1}{2},1 \right]\cup \left[ -1,-\dfrac{1}{2} \right]
(d) a[12,1]a\in \left[ \dfrac{1}{2},1 \right]

Explanation

Solution

Write sin6x+cos6x{{\sin }^{6}}x+{{\cos }^{6}}x in the form of a3+b3{{a}^{3}}+{{b}^{3}} and apply the identity, a3+b3=(a+b)33ab(a+b){{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right). Use the trigonometric identity, sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 to simplify the expression. Now, use the formula, 2sinθ.cosθ=sin2θ2\sin \theta .\cos \theta =\sin 2\theta to convert L.H.S to a function containing a single trigonometric function. Now use the information, 0sin2θ10\le {{\sin }^{2}}\theta \le 1 to find the range of ‘a’.

Complete step-by-step solution:
We have been provided with the equation, sin6x+cos6x=a2{{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}. Let us consider the L.H.S. = sin6x+cos6x=a2{{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}. This can be written as,
L.H.S=(sin2x)3+(cos2x)3\Rightarrow L.H.S={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}
We know that, a3+b3=(a+b)33ab(a+b){{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right), therefore, we have,
L.H.S=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)\Rightarrow L.H.S={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)
Applying the identity, sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, we get,
L.H.S=13sin2xcos2x×1 L.H.S=13sin2xcos2x \begin{aligned} & \Rightarrow L.H.S=1-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\\ & \Rightarrow L.H.S=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\\ \end{aligned}
The above relation can be written as,
L.H.S=134×4sin2xcos2x L.H.S=134×(2sinxcosx)2 \begin{aligned} & \Rightarrow L.H.S=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x \\\ & \Rightarrow L.H.S=1-\dfrac{3}{4}\times {{\left( 2\sin x\cos x \right)}^{2}} \\\ \end{aligned}
We know that 2sinxcosx=sin2x2\sin x\cos x=\sin 2x, therefore we have,
L.H.S=134sin22x\Rightarrow L.H.S=1-\dfrac{3}{4}{{\sin }^{2}}2x
So, we can write the original equation as,
134sin22x=a21-\dfrac{3}{4}{{\sin }^{2}}2x={{a}^{2}}
To find the range of a, we must find the range of 134sin22x1-\dfrac{3}{4}{{\sin }^{2}}2x. We know that,
0sin22x10\le {{\sin }^{2}}2x\le 1, because the range of sine function is [-1, 1]. Multiplying 34\dfrac{3}{4}, we get,
034sin22x34\Rightarrow 0\le \dfrac{3}{4}{{\sin }^{2}}2x\le \dfrac{3}{4}
Now, multiplying -1 and reversing the direction of inequality, we get,
034sin22x34 3434sin22x0 \begin{aligned} & \Rightarrow 0\ge -\dfrac{3}{4}{{\sin }^{2}}2x\ge -\dfrac{3}{4} \\\ & \Rightarrow -\dfrac{3}{4}\le -\dfrac{3}{4}{{\sin }^{2}}2x\le 0 \\\ \end{aligned}
Now, adding 1, we get,
134134sin22x1+0 14a21 \begin{aligned} & \Rightarrow 1-\dfrac{3}{4}\le 1-\dfrac{3}{4}{{\sin }^{2}}2x\le 1+0 \\\ & \Rightarrow \dfrac{1}{4}\le {{a}^{2}}\le 1 \\\ \end{aligned}
Case (i) : When a214{{a}^{2}}\ge \dfrac{1}{4},
a2(12)2 a[.12][12,] \begin{aligned} & \Rightarrow {{a}^{2}}\ge {{\left( \dfrac{1}{2} \right)}^{2}} \\\ & \Rightarrow a\in \left[ -\infty .-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},\infty \right] \\\ \end{aligned}
Case (ii) : When a21{{a}^{2}}\le 1,
a212 1a+1 a[1,1] \begin{aligned} & \Rightarrow {{a}^{2}}\le {{1}^{2}} \\\ & \Rightarrow -1\le a\le +1 \\\ & \Rightarrow a\in \left[ -1,1 \right] \\\ \end{aligned}
Since, we have to satisfy both the cases, therefore, to find the values of ‘a’, we need to take the intersection of the above sets of values of ‘a’. Therefore, taking intersection of the set, we get,
a[1,1][,12][12,] a[1,12][12,1] \begin{aligned} & a\in \left[ -1,1 \right]\cap \left[ -\infty ,\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},\infty \right] \\\ & \Rightarrow a\in \left[ -1,-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},1 \right] \\\ \end{aligned}
Hence, option (c) is the correct answer.

Note: One may note that when we multiply (-1) with 34sin22x\dfrac{3}{4}{{\sin }^{2}}2x, then the direction of inequality gets reversed. This is because when any negative number is multiplied to the inequality, its direction changes. This also happens when we take the reciprocal. You must note that we have to satisfy both cases (i) and case (ii) and therefore, we need to take the intersection of the sets and not the union.