Solveeit Logo

Question

Question: The equation of the tangent to the parabola \(y = 3 x + 7\)is...

The equation of the tangent to the parabola y=3x+7y = 3 x + 7is

A

y3x+4=0y - 3 x + 4 = 0

B

3yx+36=03 y - x + 36 = 0

C

3y+x36=03 y + x - 36 = 0

D

3y+x+36=03 y + x + 36 = 0

Answer

y3x+4=0y - 3 x + 4 = 0

Explanation

Solution

A line perpendicular to the given line is 3y+x=λ3 y + x = \lambda

y=13x+λ3y = - \frac { 1 } { 3 } x + \frac { \lambda } { 3 }

Here m=13m = - \frac { 1 } { 3 } , y2=16xy ^ { 2 } = 16 x with y2=4axy ^ { 2 } = 4 a x then a=4a = 4

Condition for tangency is c=amc = \frac { a } { m }λ3=4(1/3)\frac { \lambda } { 3 } = \frac { 4 } { ( - 1 / 3 ) }λ=36\lambda = - 36 .

∴ Required equation is x+3y+36=0x + 3 y + 36 = 0