Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The equation of the tangent to the curve y=(1+x)y+sin1(sin2x)y={{(1+x)}^{y}}+{{\sin }^{-1}}({{\sin }^{2}}x) at x=0x=0 is:

A

xy+1=0x-y+1=0

B

x+y+1=0x+y+1=0

C

2xy+1=02x-y+1=0

D

x+2y+2=0x+2y+2=0

Answer

xy+1=0x-y+1=0

Explanation

Solution

y=(1+x)y+sin1(sin2x)y={{(1+x)}^{y}}+{{\sin }^{-1}}({{\sin }^{2}}x) At x=0,y=1x=0,y=1 Let y=u+vy=u+v where u=(1+x)y,u={{(1+x)}^{y}}, v=sin1(sin2x)v={{\sin }^{-1}}({{\sin }^{2}}x) \Rightarrow logu=ylog(1+x)\log u=y\log (1+x) \Rightarrow dydx1u=y1+x+log(1+x)dydx\frac{dy}{dx}\frac{1}{u}=\frac{y}{1+x}+\log (1+x)\frac{dy}{dx} and dvdx=11sin2x.2sinxcosx\frac{dv}{dx}=\frac{1}{\sqrt{1-{{\sin }^{2}}x}}.2\sin x\cos x \therefore dydx=(1+x)y[y1+x+log(1+x)dydx]\frac{dy}{dx}={{(1+x)}^{y}}\left[ \frac{y}{1+x}+\log (1+x)\frac{dy}{dx} \right] +sin2xcosx+\frac{\sin 2x}{\cos x} dydx[1(1+x)ylog(x+1)]\frac{dy}{dx}[1-{{(1+x)}^{y}}\log (x+1)] =(1+x)yy1+x+sin2xcosx=\frac{{{(1+x)}^{y}}y}{1+x}+\frac{\sin 2x}{\cos x} \therefore dydx(0,1)=11+0=1{{\left. \frac{dy}{dx} \right|}_{(0,1)}}=\frac{1}{1+0}=1 \therefore Equation of tangent is (y1)=1(x)yx1=0(y-1)=1(x)\Rightarrow y-x-1=0 \Rightarrow xy+1=0x-y+1=0