Question
Mathematics Question on Tangents and Normals
The equation of the tangent to the curve y=(1+x)y+sin−1(sin2x) at x=0 is:
A
x−y+1=0
B
x+y+1=0
C
2x−y+1=0
D
x+2y+2=0
Answer
x−y+1=0
Explanation
Solution
y=(1+x)y+sin−1(sin2x) At x=0,y=1 Let y=u+v where u=(1+x)y, v=sin−1(sin2x) ⇒ logu=ylog(1+x) ⇒ dxdyu1=1+xy+log(1+x)dxdy and dxdv=1−sin2x1.2sinxcosx ∴ dxdy=(1+x)y[1+xy+log(1+x)dxdy] +cosxsin2x dxdy[1−(1+x)ylog(x+1)] =1+x(1+x)yy+cosxsin2x ∴ dxdy(0,1)=1+01=1 ∴ Equation of tangent is (y−1)=1(x)⇒y−x−1=0 ⇒ x−y+1=0