Question
Mathematics Question on Differential Calculus
The equation of the tangent to the curve x5/2 + y5/2 = 33 at the point(1, 4) is:
A
x + 8y − 33 = 0
B
12x + y − 8 = 0
C
x + 8y − 12 = 0
D
x + 12y − 8 = 0
Answer
x + 8y − 33 = 0
Explanation
Solution
Differentiate the given curve implicitly:
dxd(x25+y25)=dxd(33).
Using the chain rule:
−x310−y310⋅dxdy=0.
Rearrange to find dxdy:
dxdy=−x310÷−y310=−x3y3.
At the point (1, 4):
dxdy=−1343=−64.
The equation of the tangent is:
y−y1=m(x−x1),
where m=−64, (x1,y1)=(1,4). Substituting:
y−4=−64(x−1).
Simplify:
y−4=−64x+64⇒x+8y−33=0.