Solveeit Logo

Question

Question: The equation of the tangent at \(( - 4, - 4)\) on the curve \(x^{2} = - 4y\) is...

The equation of the tangent at (4,4)( - 4, - 4) on the curve x2=4yx^{2} = - 4y is

A

2x+y+4=02x + y + 4 = 0

B

2xy12=02x - y - 12 = 0

C

2x+y4=02x + y - 4 = 0

D

2xy+4=02x - y + 4 = 0

Answer

2xy+4=02x - y + 4 = 0

Explanation

Solution

x2=4yx^{2} = - 4y2x=4dydx2x = - 4\frac{dy}{dx}dydx=x2\frac{dy}{dx} = \frac{- x}{2}(dydx)(4,4)=2\left( \frac{dy}{dx} \right)_{( - 4, - 4)} = 2.

We know that equation of tangent is

(yy1)=(dydx)(x1,y1)(xx1)(y - y_{1}) = \left( \frac{dy}{dx} \right)_{(x_{1},y_{1})}(x - x_{1})y+4=2(x+4)y + 4 = 2(x + 4)

2xy+4=02x - y + 4 = 0.