Solveeit Logo

Question

Question: The equation of the straight line passing through (1, 2, 3) and perpendicular to the plane \(x + 2y ...

The equation of the straight line passing through (1, 2, 3) and perpendicular to the plane x+2y5z+9=0x + 2y - 5z + 9 = 0 is

A

x11=y22=z35\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{- 5}

B

x11=y22=z+53\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 5}{3}

C

x+11=y+22=z+35\frac{x + 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 5}

D

x+11=y+22=z53\frac{x + 1}{1} = \frac{y + 2}{2} = \frac{z - 5}{3}

Answer

x11=y22=z35\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{- 5}

Explanation

Solution

The line passes through point (1,2,3) is x1a=y2b=z3c\frac { x - 1 } { a } = \frac { y - 2 } { b } = \frac { z - 3 } { c } and it is perpendicular to the plane x+2y5z+9=0x + 2 y - 5 z + 9 = 0 therefore the line must be x11=y22=z35\frac { x - 1 } { 1 } = \frac { y - 2 } { 2 } = \frac { z - 3 } { - 5 }because sinθ=11+22+(5)(5)12+22+5212+22+52=1\sin \theta = \frac { 1 \cdot 1 + 2 \cdot 2 + ( - 5 ) ( - 5 ) } { \sqrt { 1 ^ { 2 } + 2 ^ { 2 } + 5 ^ { 2 } } \cdot \sqrt { 1 ^ { 2 } + 2 ^ { 2 } + 5 ^ { 2 } } } = 1

n=23n = \frac { - 2 } { 3 }.