Solveeit Logo

Question

Question: The equation of the straight line joining the point \(( a , b )\)to the point of intersection of the...

The equation of the straight line joining the point (a,b)( a , b )to the point of intersection of the lines xa+yb=1\frac { x } { a } + \frac { y } { b } = 1 and xb+ya=1\frac { x } { b } + \frac { y } { a } = 1 is .

A

a2yb2x=ab(ab)a ^ { 2 } y - b ^ { 2 } x = a b ( a - b )

B

a2y+b2y=ab(a+b)a ^ { 2 } y + b ^ { 2 } y = a b ( a + b )

C

a2y+b2x=aba ^ { 2 } y + b ^ { 2 } x = a b

D

a2x+b2y=ab(ab)a ^ { 2 } x + b ^ { 2 } y = a b ( a - b )

Answer

a2yb2x=ab(ab)a ^ { 2 } y - b ^ { 2 } x = a b ( a - b )

Explanation

Solution

The given lines intersect at (aba+b,aba+b)\left( \frac { a b } { a + b } , \frac { a b } { a + b } \right) and join of this with (a, b) will have slope b2a2\frac { b ^ { 2 } } { a ^ { 2 } }. Now proceed.