Solveeit Logo

Question

Question: The equation of the plane, which makes with co-ordinate axes a triangle with its centroid (α, β, γ),...

The equation of the plane, which makes with co-ordinate axes a triangle with its centroid (α, β, γ), is

A

αx+βy+γz=3\alpha x + \beta y + \gamma z = 3

B

xα+yβ+zγ=1\frac { x } { \alpha } + \frac { y } { \beta } + \frac { z } { \gamma } = 1

C

αx+βy+γz=1\alpha x + \beta y + \gamma z = 1

D

xα+yβ+zγ=3\frac { x } { \alpha } + \frac { y } { \beta } + \frac { z } { \gamma } = 3

Answer

xα+yβ+zγ=3\frac { x } { \alpha } + \frac { y } { \beta } + \frac { z } { \gamma } = 3

Explanation

Solution

We know that xa+yb+zc=1\frac { x } { a } + \frac { y } { b } + \frac { z } { c } = 1 ……(i)

Centroid (a3,b3,c3)\left( \frac { a } { 3 } , \frac { b } { 3 } , \frac { c } { 3 } \right) i.e. α=a/3,β=b/3,γ=c/3\alpha = a / 3 , \beta = b / 3 , \gamma = c / 3

a=3α,b=3β,c=3γa = 3 \alpha , b = 3 \beta , c = 3 \gamma

From equation (i), x3α+y3β+z3γ=1\frac { x } { 3 \alpha } + \frac { y } { 3 \beta } + \frac { z } { 3 \gamma } = 1

xα+yβ+zγ=3\frac { x } { \alpha } + \frac { y } { \beta } + \frac { z } { \gamma } = 3 .