Solveeit Logo

Question

Question: The equation of the plane which bisects the angle between the planes \(3 x - 6 y + 2 z + 5 = 0\) and...

The equation of the plane which bisects the angle between the planes 3x6y+2z+5=03 x - 6 y + 2 z + 5 = 0 and 4x12y+3z3=04 x - 12 y + 3 z - 3 = 0 which contains the origin is

A

33x13y+32z+45=033 x - 13 y + 32 z + 45 = 0

B

x3y+z5=0x - 3 y + z - 5 = 0

C

33x+13y+32z+45=033 x + 13 y + 32 z + 45 = 0

D

None of these

Answer

33x13y+32z+45=033 x - 13 y + 32 z + 45 = 0

Explanation

Solution

Equation of plane bisecting the angle containing origin is (making constant term of same sign)

3x+6y2z532+62+22=+[4x12y+3z342+122+32]\frac { - 3 x + 6 y - 2 z - 5 } { \sqrt { 3 ^ { 2 } + 6 ^ { 2 } + 2 ^ { 2 } } } = + \left[ \frac { 4 x - 12 y + 3 z - 3 } { \sqrt { 4 ^ { 2 } + 12 ^ { 2 } + 3 ^ { 2 } } } \right]

or 3x+6y2z57=4x12y+3z313\frac { - 3 x + 6 y - 2 z - 5 } { 7 } = \frac { 4 x - 12 y + 3 z - 3 } { 13 }

or 67x162y+47z+44=067 x - 162 y + 47 z + 44 = 0.