Solveeit Logo

Question

Question: The equation of the plane passing through the lines \(\frac{x - 4}{1} = \frac{y - 3}{1} = \frac{z - ...

The equation of the plane passing through the lines x41=y31=z22\frac{x - 4}{1} = \frac{y - 3}{1} = \frac{z - 2}{2}and x31=y24=z5\frac{x - 3}{1} = \frac{y - 2}{- 4} = \frac{z}{5} is

A

11xy3z=3511x - y - 3z = 35

B

11x+y3z=3511x + y - 3z = 35

C

11xy+3z=3511x - y + 3z = 35

D

None of these

Answer

None of these

Explanation

Solution

a(x4)+b(y3)+c(z2)=0a ( x - 4 ) + b ( y - 3 ) + c ( z - 2 ) = 0

a+b+2c=0\therefore a + b + 2 c = 0 and a4b+5c=0a - 4 b + 5 c = 0

a5+8=b25=c41=k\frac { a } { 5 + 8 } = \frac { b } { 2 - 5 } = \frac { c } { - 4 - 1 } = k

a13=b3=c5=k\frac { a } { 13 } = \frac { b } { - 3 } = \frac { c } { - 5 } = k

Therefore, the required equation of plane is

13x+3y+5z+33=0- 13 x + 3 y + 5 z + 33 = 0