Solveeit Logo

Question

Question: The equation of the plane containing the lines \(\mathbf{r} = \mathbf{a}_{1} + \lambda\mathbf{a}_{2}...

The equation of the plane containing the lines r=a1+λa2\mathbf{r} = \mathbf{a}_{1} + \lambda\mathbf{a}_{2} and r=a2+λa1\mathbf{r} = \mathbf{a}_{2} + \lambda\mathbf{a}_{1} is

A

[r6mua16mua2]=0\lbrack\mathbf{r}\mspace{6mu}\mathbf{a}_{1}\mspace{6mu}\mathbf{a}_{2}\rbrack = 0

B

[r6mua16mua2]=a1.6mua2\lbrack\mathbf{r}\mspace{6mu}\mathbf{a}_{1}\mspace{6mu}\mathbf{a}_{2}\rbrack = \mathbf{a}_{1}.\mspace{6mu}\mathbf{a}_{2}

C

[r6mua26mua1]=a1.6mua2\lbrack\mathbf{r}\mspace{6mu}\mathbf{a}_{2}\mspace{6mu}\mathbf{a}_{1}\rbrack = \mathbf{a}_{1}.\mspace{6mu}\mathbf{a}_{2}

D

None of these

Answer

[r6mua16mua2]=0\lbrack\mathbf{r}\mspace{6mu}\mathbf{a}_{1}\mspace{6mu}\mathbf{a}_{2}\rbrack = 0

Explanation

Solution

The required plane passes through a point having position vector a1\mathbf{a}_{1} and is parallel to the vectors a1\mathbf{a}_{1} and a2\mathbf{a}_{2}. If r\mathbf{r} is the position vector of any point on the plane, then ra1,a1,a2\mathbf{r} - \mathbf{a}_{1},\mathbf{a}_{1},\mathbf{a}_{2} are coplanar.

Therefore, (ra1).(a1×a2)=0(\mathbf{r} - \mathbf{a}_{1}).(\mathbf{a}_{1} \times \mathbf{a}_{2}) = 0

[ra1a2]\lbrack\mathbf{r}\mathbf{a}_{1}\mathbf{a}_{2}\rbrack =[a1a1a2][ra1a2]=0\lbrack\mathbf{a}_{1}\mathbf{a}_{1}\mathbf{a}_{2}\rbrack \Rightarrow \lbrack\mathbf{r}\mathbf{a}_{1}\mathbf{a}_{2}\rbrack = 0

Hence, the required plane is [ra1a2]=0\lbrack\mathbf{r}\mathbf{a}_{1}\mathbf{a}_{2}\rbrack = 0.