Solveeit Logo

Question

Question: The equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+...

The equation of the plane containing the lines 2x5y+z=3;x+y+4z=52x-5y+z=3;x+y+4z=5 and parallel to the plane x+3y+6z=1x+3y+6z=1.

& A)2x+6y+12z=13 \\\ & B)x+3y+6z=-7 \\\ & C)x+3y+6z=7 \\\ & D)2x+6y+12z=-13 \\\ \end{aligned}$$
Explanation

Solution

We know that the equation of the plane containing the lines a1x+b1y+c1z+d1=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0 and a2x+b2y+c2z+d2=0{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0 is equal to a1x+b1y+c1z+d1+λ(a2x+b2y+c2z+d2)=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0. So, we should write the equation of the plane containing the lines 2x5y+z=3;x+y+4z=52x-5y+z=3;x+y+4z=5. We know that the planes a1x+b1y+c1z+d1=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0 and a2x+b2y+c2z+d2=0{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0 are said to be parallel, then a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}. It is also given that the equation of the plane containing the lines 2x5y+z=3;x+y+4z=52x-5y+z=3;x+y+4z=5 and parallel to the plane x+3y+6z=1x+3y+6z=1. By using the concept, we can find the value of λ\lambda . By using this value of λ\lambda , we can find the equation of the plane containing the lines 2x5y+z=3;x+y+4z=52x-5y+z=3;x+y+4z=5 and parallel to the plane x+3y+6z=1x+3y+6z=1.

Complete step-by-step answer:
We know that the equation of the plane containing the lines a1x+b1y+c1z+d1=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0 and a2x+b2y+c2z+d2=0{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0 is equal to a1x+b1y+c1z+d1+λ(a2x+b2y+c2z+d2)=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0.
Now we should find the plane containing the lines 2x5y+z=3;x+y+4z=52x-5y+z=3;x+y+4z=5. 2x5y+z+λ(x+y+4z)=3+5λ 2x5y+z+λx+λy+4λz=3+5λ (2+λ)x+(λ5)y+(4λ+1)=3+5λ (2+λ)x+(λ5)y+(4λ+1)35λ=0....(1) \begin{aligned} & \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\\ & \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\\ & \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\\ & \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\\ \end{aligned}
From the question, it is clear that the equation of the plane containing the lines 2x5y+z=3;x+y+4z=52x-5y+z=3;x+y+4z=5 and parallel to the plane x+3y+6z=1x+3y+6z=1.
We know that the planes a1x+b1y+c1z+d1=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0 and a2x+b2y+c2z+d2=0{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0 are said to be parallel, then a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}.
So, it is clear that the planes (2+λ)x+(λ5)y+(4λ+1)35λ=0\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0 and x+3y+6z=1x+3y+6z=1 are parallel.
2+λ1=λ53=4λ+16.....(2)\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)
So, let us assume
2+λ1=λ53=4λ+16=k.....(3)\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)
So, from equation (3), we can write
2+λ1=k\Rightarrow \dfrac{2+\lambda }{1}=k
By using cross multiplication, we get
2+λ=k....(4)\Rightarrow 2+\lambda =k....(4)
Now, from equation (3), we get
λ53=k\Rightarrow \dfrac{\lambda -5}{3}=k
By using cross multiplication, we get
λ5=3k....(5)\Rightarrow \lambda -5=3k....(5)
Now let us substitute equation (5) in equation (4), then we get

& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\\ & \Rightarrow \lambda -5=6+3\lambda \\\ & \Rightarrow 2\lambda =-11 \\\ & \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\\ \end{aligned}$$ Now we will substitute equation (6) in equation (1), then we get $$\begin{aligned} & \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\\ & \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\\ & \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\\ & \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\\ & \Rightarrow -7x-21y-42z+49=0 \\\ & \Rightarrow -x-3y-6z+7=0 \\\ & \Rightarrow x+3y+6z-7=0 \\\ & \Rightarrow x+3y+6z=7.....(7) \\\ \end{aligned}$$ So, from equation (7) we will get that the equation of the plane containing the lines $$2x-5y+z=3;x+y+4z=5$$ and parallel to the plane $$x+3y+6z=1$$ is equal to $$x+3y+6z=7$$. **So, the correct answer is “Option C”.** **Note:** Students have a misconception that that the planes $${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0$$ and $${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0$$ are said to be parallel, then $$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}$$. But we know that the planes $${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0$$ and $${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0$$ are said to be parallel, then $$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$$. So, students should avoid this misconception.