Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The equation of the plane containing the lines x12=y+11=z3\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3} and x2=y21=z+13\frac{x}{2}=\frac{y-2}{-1}=\frac{z+1}{3} is

A

8xy+5z8=08x-y+5z-8=0

B

8x+y5z7=08x+y-5z-7=0

C

x8y+3z+6=0x-8y+3z+6=0

D

8x+y5z+7=08x+y-5z+7=0

Answer

8x+y5z7=08x+y-5z-7=0

Explanation

Solution

The equation of plane containing the line x12=y+11=z3\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3} and x2=y21=x+13\frac{x}{2}=\frac{y-2}{-1}=\frac{x+1}{3} The required equation is x1(y+1)3 xy23+1 213 =0\left| \begin{matrix} x-1 & (y+1) & 3 \\\ x & y-2 & 3+1 \\\ 2 & -1 & 3 \\\ \end{matrix} \right|=0 \Rightarrow (x1)(3y6+z1)(y+1)(x-1)(3y-6+z-1)-(y+1) (3x2z2)+z(x2y+4)=0(3x-2z-2)+z(-x-2y+4)=0 5x3yz+5+2y3x+2z+2+4z=0-5x-3y-z+5+2y-3x+2z+2+4z=0 \Rightarrow 8xy+5z+7=0-8x-y+5z+7=0 \Rightarrow 8x+y5z7=08x+y-5z-7=0