Solveeit Logo

Question

Question: The equation of the plane containing the line \(\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{...

The equation of the plane containing the line

x+13=y32=z+21\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} and the point (0, 7, –7) is

A

x+y+z=1x + y + z = 1

B

x+y+z=2x + y + z = 2

C

x+y+z=0x + y + z = 0

D

None of these

Answer

x+y+z=0x + y + z = 0

Explanation

Solution

The equation of plane containing the line

x+13=y32=z+21\frac { x + 1 } { - 3 } = \frac { y - 3 } { 2 } = \frac { z + 2 } { 1 } is

a(x+1)+b(y3)+c(z+2)=0a ( x + 1 ) + b ( y - 3 ) + c ( z + 2 ) = 0 .....(i)

where 3a+2b+c=0- 3 a + 2 b + c = 0 .....(ii)

This passes through (0, 7, –7)

\therefore a+4b5c=0a + 4 b - 5 c = 0 ..…(iii)

From (ii) and (iii),a14=b14=c14\frac { a } { - 14 } = \frac { b } { - 14 } = \frac { c } { - 14 } or a1=b1=c1\frac { a } { 1 } = \frac { b } { 1 } = \frac { c } { 1 }

Thus, the required plane is x+y+z=0x + y + z = 0.