Solveeit Logo

Question

Question: The equation of the normal to the hyperbola \(\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1\) at the point ...

The equation of the normal to the hyperbola x216y29=1\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 at the point (8,33)(8,3\sqrt{3}) is

A

3x+2y=25\sqrt{3}x + 2y = 25

B

x+y=25x + y = 25

C

y+2x=25y + 2x = 25

D

2x+3y=252x + \sqrt{3}y = 25

Answer

2x+3y=252x + \sqrt{3}y = 25

Explanation

Solution

From a2xx1+b2yy1=a2+b2\frac{a^{2}x}{x_{1}} + \frac{b^{2}y}{y_{1}} = a^{2} + b^{2}

Here a2=16a^{2} = 16, b2=9b^{2} = 9 and (x1,y1)=(8,33)(x_{1},y_{1}) = (8,3\sqrt{3})

16x8+9y33=16+9\frac{16x}{8} + \frac{9y}{3\sqrt{3}} = 16 + 9 i.e., 2x+3y=252x + \sqrt{3}y = 25