Solveeit Logo

Question

Question: The equation of the normal to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\)at the po...

The equation of the normal to the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1at the positive end of the latus-rectum is

A

x+ey+e3a=0x + ey + e^{3}a = 0

B

xeye3a=0x - ey - e^{3}a = 0

C

xeye2a=0x - ey - e^{2}a = 0

D

None of these

Answer

xeye3a=0x - ey - e^{3}a = 0

Explanation

Solution

The equation of the normal at (x1,y1)(x_{1},y_{1}) to the given ellipse is a2xx1b2yy1=a2b2\frac{a^{2}x}{x_{1}} - \frac{b^{2}y}{y_{1}} = a^{2} - b^{2}. Here, x1=aex_{1} = ae and y1=b2ay_{1} = \frac{b^{2}}{a}

So, the equation of the normal at positive end of the latus- rectum is

a2xaeb2yb2/a=a2e2\frac{a^{2}x}{ae} - \frac{b^{2}y}{b^{2}/a} = a^{2}e^{2} [b2=a2(1e2)\because b^{2} = a^{2}(1 - e^{2})] ⇒ axeay=a2e2\frac{ax}{e} - ay = a^{2}e^{2}

xeye3a=0x - ey - e^{3}a = 0