Solveeit Logo

Question

Mathematics Question on Application of derivatives

The equation of the normal to the curve y(1+x2)=2xy(1 + x^2) = 2 - x where the tangent crosses xaxisx-axis is

A

5xy10=05 x - y - 10 = 0

B

x5y10=0 x - 5y - 10 = 0

C

5x+y+10=05 x + y + 10 = 0

D

x+5y+10=0 x + 5 y + 10 = 0

Answer

5xy10=05 x - y - 10 = 0

Explanation

Solution

We have, y(1+x2)=2xy\left(1+x^{2}\right)=2-x\dots(i)
Put y=0x=2[y=0 \Rightarrow x=2 [\because tangent crosses XX -axis]
On differentiating E (i) w.r.t. xx, we get
dydx(1+x2)+2xy=1\frac{d y}{d x}\left(1+x^{2}\right)+2 x y=-1
dydx=12xy1+x2\Rightarrow \frac{d y}{d x}=\frac{-1-2 x y}{1+x^{2}}
(dydx)(2,0)=101+4=15\therefore\left(\frac{d y}{d x}\right)_{(2,0)}=\frac{-1-0}{1+4}=\frac{-1}{5}
So, the slope of normal is 55 .
\therefore Equation of the normal at (2,0)(2,0) is
y0=5(x2)y-0 =5(x-2)
y=5x10\Rightarrow y =5 x-10
5xy10=0\Rightarrow 5 x-y-10 =0