Solveeit Logo

Question

Question: The equation of the lines on which the perpendiculars from the origin make \(30 ^ { \circ }\) angle...

The equation of the lines on which the perpendiculars from the origin make 3030 ^ { \circ } angle with x–axis and which form a triangle of area 503\frac { 50 } { \sqrt { 3 } } with axes, are.

A

x+3y±10=0x + \sqrt { 3 } y \pm 10 = 0

B

3x+y±10=0\sqrt { 3 } x + y \pm 10 = 0

C

x±3y10=0x \pm \sqrt { 3 } y - 10 = 0

D

None of these

Answer

3x+y±10=0\sqrt { 3 } x + y \pm 10 = 0

Explanation

Solution

Let p be the length of the perpendicular from the origin on the given line. Then its equation in normal form is xcos30+ysin30=px \cos 30 ^ { \circ } + y \sin 30 ^ { \circ } = por 3x+y=2p\sqrt { 3 } x + y = 2 p

This meets the coordinate axes at A(2p3,0)A \left( \frac { 2 p } { \sqrt { 3 } } , 0 \right) and B(0,2p)B ( 0,2 p ). ∴ Area of

By hypothesis 2p23=503p=±5\frac { 2 p ^ { 2 } } { \sqrt { 3 } } = \frac { 50 } { \sqrt { 3 } } \Rightarrow p = \pm 5.

Hence the lines are 3x+y±10=0\sqrt { 3 } x + y \pm 10 = 0.