Solveeit Logo

Question

Question: The equation of the line which cuts off the intercepts \(2 a \sec \theta\) and \(2 a \operatorname ...

The equation of the line which cuts off the intercepts 2asecθ2 a \sec \theta and 2acosecθ2 a \operatorname { cosec } \theta on the axes is.

A

xsinθ+ycosθ2a=0x \sin \theta + y \cos \theta - 2 a = 0

B

xcosθ+ysinθ2a=0x \cos \theta + y \sin \theta - 2 a = 0

C

xsecθ+ycosecθ2a=0x \sec \theta + y \operatorname { cosec } \theta - 2 a = 0

D

xcosecθ+ysecθ2a=0x \operatorname { cosec } \theta + y \sec \theta - 2 a = 0

Answer

xcosθ+ysinθ2a=0x \cos \theta + y \sin \theta - 2 a = 0

Explanation

Solution

Using the intercept form of the line

x2asecθ+y2acosecθ=1xcosθ+ysinθ=2a\frac { x } { 2 a \sec \theta } + \frac { y } { 2 a \operatorname { cosec } \theta } = 1 \Rightarrow x \cos \theta + y \sin \theta = 2 a .