Solveeit Logo

Question

Question: The equation of the line perpendicular to the line \(\frac { x } { a } - \frac { y } { b } = 1\) a...

The equation of the line perpendicular to the line xayb=1\frac { x } { a } - \frac { y } { b } = 1 and passing through the point at which it cuts x–axis, is.

A

xa+yb+ab=0\frac { x } { a } + \frac { y } { b } + \frac { a } { b } = 0

B

xb+ya=ba\frac { x } { b } + \frac { y } { a } = \frac { b } { a }

C

xb+ya=0\frac { x } { b } + \frac { y } { a } = 0

D

xb+ya=ab\frac { x } { b } + \frac { y } { a } = \frac { a } { b }

Answer

xb+ya=ab\frac { x } { b } + \frac { y } { a } = \frac { a } { b }

Explanation

Solution

The given line is bxay=abb x - a y = a b

Obviously it cuts xx -axis at (a, 0). The equation of line perpendicular to (i) is ax+by=ka x + b y = k, but it passes through (a, 0) ⇒ k=a2k = a ^ { 2 } .

Hence required equation of line is ax+by=a2a x + b y = a ^ { 2 }

i.e., xb+ya=ab\frac { x } { b } + \frac { y } { a } = \frac { a } { b } .