Solveeit Logo

Question

Question: The equation of the line passing through the point \(\left( x ^ { \prime } , y ^ { \prime } \right)\...

The equation of the line passing through the point (x,y)\left( x ^ { \prime } , y ^ { \prime } \right) and perpendicular to the line yy=2a(x+x)y y ^ { \prime } = 2 a \left( x + x ^ { \prime } \right) is.

A

xy+2ay+2ayxy=0x y ^ { \prime } + 2 a y + 2 a y ^ { \prime } - x ^ { \prime } y ^ { \prime } = 0

B

xy+2ay2ayxy=0x y ^ { \prime } + 2 a y - 2 a y ^ { \prime } - x ^ { \prime } y ^ { \prime } = 0

C

xy+2ay+2ay+xy=0x y ^ { \prime } + 2 a y + 2 a y ^ { \prime } + x ^ { \prime } y ^ { \prime } = 0

D

xy+2ay2ay+xy=0x y ^ { \prime } + 2 a y - 2 a y ^ { \prime } + x ^ { \prime } y ^ { \prime } = 0

Answer

xy+2ay2ayxy=0x y ^ { \prime } + 2 a y - 2 a y ^ { \prime } - x ^ { \prime } y ^ { \prime } = 0

Explanation

Solution

Slope = y2a\frac { - y ^ { \prime } } { 2 a } .

Hence equation is yx+2ay=yx+2ayy ^ { \prime } x + 2 a y = y ^ { \prime } x ^ { \prime } + 2 a y ^ { \prime } .