Solveeit Logo

Question

Question: The equation of the line passing through (1, 2, 3) and parallel to the planes \(x - y + 2z = 5\) and...

The equation of the line passing through (1, 2, 3) and parallel to the planes xy+2z=5x - y + 2z = 5 and 3x+y+z=63x + y + z = 6, is

A

x13=y25=z34\frac{x - 1}{- 3} = \frac{y - 2}{5} = \frac{z - 3}{4}

B

x13=y25=z14\frac{x - 1}{- 3} = \frac{y - 2}{- 5} = \frac{z - 1}{4}

C

x13=y25=z14\frac{x - 1}{- 3} = \frac{y - 2}{- 5} = \frac{z - 1}{- 4}

D

None of these

Answer

x13=y25=z34\frac{x - 1}{- 3} = \frac{y - 2}{5} = \frac{z - 3}{4}

Explanation

Solution

x1l=y2m=z3n\frac { x - 1 } { l } = \frac { y - 2 } { m } = \frac { z - 3 } { n } or lm+2n=0l - m + 2 n = 0 and

3l+m+n=03 l + m + n = 0

x13=y25=z34\therefore \frac { x - 1 } { - 3 } = \frac { y - 2 } { 5 } = \frac { z - 3 } { 4 }.