Solveeit Logo

Question

Question: The equation of the line passes through (*a, b*) and parallel to the line \(\frac { x } { a } + \fra...

The equation of the line passes through (a, b) and parallel to the line xa+yb=1\frac { x } { a } + \frac { y } { b } = 1, is

A

xa+yb=3\frac { x } { a } + \frac { y } { b } = 3

B

xa+yb=2\frac { x } { a } + \frac { y } { b } = 2

C

xa+yb=0\frac { x } { a } + \frac { y } { b } = 0

D

xa+yb+2=0\frac { x } { a } + \frac { y } { b } + 2 = 0

Answer

xa+yb=2\frac { x } { a } + \frac { y } { b } = 2

Explanation

Solution

The equation of parallel line to given line is xa+yb=λ\frac { x } { a } + \frac { y } { b } = \lambda.

This line passes through point (a, b).

\therefore aa+bb=λ\frac { a } { a } + \frac { b } { b } = \lambdaλ=2\lambda = 2

Hence, required line is xa+yb=2\frac { x } { a } + \frac { y } { b } = 2.