Solveeit Logo

Question

Mathematics Question on Application of derivatives

The equation of the line parallel to x-axis and tangent to the curve y=1x2+2x+5y=\frac{1}{{{x}^{2}}+2x+5} is

A

y=14y=\frac{1}{4}

B

y=4y=4

C

y=12y=\frac{1}{2}

D

y=0y=0

Answer

y=14y=\frac{1}{4}

Explanation

Solution

Curve, y=1x2+2x+5y=\frac{1}{{{x}^{2}}+2x+5} ..(i) Let the equation of line which is parallel to xx- axis is, y=cy=c ...(ii) The line (ii) is a tangent to curve (i), then slope of curve = slope of line (2x+2)(x2+2x+5)2=0\frac{-(2x+2)}{{{({{x}^{2}}+2x+5)}^{2}}}=0 (dydx=(2x+2)(x2+2x+5)2)\left( \because \frac{dy}{dx}=\frac{-(2x+2)}{{{({{x}^{2}}+2x+5)}^{2}}} \right) \Rightarrow x=1x=-1 From E (i), y=112+5=14y=\frac{1}{1-2+5}=\frac{1}{4} From E (ii), c=14c=\frac{1}{4} Hence, the required equation of line is, y=14.y=\frac{1}{4}.