Solveeit Logo

Question

Question: The equation of the image of the circle \(x^{2} + y^{2} + 16x - 24y + 183 = 0\) by the line mirror ...

The equation of the image of the circle

x2+y2+16x24y+183=0x^{2} + y^{2} + 16x - 24y + 183 = 0 by the line mirror

4x+7y+13=04x + 7y + 13 = 0 is

A

x2+y2+32x4y+235=0x^{2} + y^{2} + 32x - 4y + 235 = 0

B

x2+y2+32x+4y235=0x^{2} + y^{2} + 32x + 4y - 235 = 0

C

x2+y2+32x4y235=0x^{2} + y^{2} + 32x - 4y - 235 = 0

D

x2+y2+32x+4y+235=0x^{2} + y^{2} + 32x + 4y + 235 = 0

Answer

x2+y2+32x+4y+235=0x^{2} + y^{2} + 32x + 4y + 235 = 0

Explanation

Solution

The given circle and line are

x2+y2+16x24y+183=0x^{2} + y^{2} + 16x - 24y + 183 = 0 …..(i) and

4x+7y+13=04x + 7y + 13 = 0 …..(ii)

Centre and radius of circle (i) are (– 8, 12) and 5 respectively. Let the centre of the image circle be (x1,y1).(x_{1},y_{1}).

Then slope of C1C2×C_{1}C_{2} \times slope of 4x+7y+13=14x + 7y + 13 = - 1

\Rightarrow (y112x1+8)×(47)=1\left( \frac{y_{1} - 12}{x_{1} + 8} \right) \times \left( - \frac{4}{7} \right) = - 1 or 4y148=7x1+564y_{1} - 48 = 7x_{1} + 56

or 7x14y1+104=07x_{1} - 4y_{1} + 104 = 0…..(iii)

and mid point of C1C2C_{1}C_{2} i.e., (x182,y1+122)\left( \frac{x_{1} - 8}{2},\frac{y_{1} + 12}{2} \right) lie on

4x+7y+13=04x + 7y + 13 = 0,

then 4(x182)+7(y1+122)+13=04\left( \frac{x_{1} - 8}{2} \right) + 7\left( \frac{y_{1} + 12}{2} \right) + 13 = 0 or

4x1+7y1+78=04x_{1} + 7y_{1} + 78 = 0…..(iv)

Solving (iii) and (iv), we get (x1,y1)=(16,2)(x_{1},y_{1}) = ( - 16, - 2)

\therefore Equation of the image circle is (x+16)2+(y+2)2=52(x + 16)^{2} + (y + 2)^{2} = 5^{2} or x2+y2+32x+4y+235=0x^{2} + y^{2} + 32x + 4y + 235 = 0