Solveeit Logo

Question

Mathematics Question on Hyperbola

The equation of the hyperbola with vertices (3,0), (-3,0) and semi-latus rectum 4 is given by:

A

4x23y2+36=04x^2 - 3y^2 + 36 = 0

B

4x23y2+12=04x^2 - 3y^2 + 12 = 0

C

4x23y236=04x^2 - 3y^2 - 36 = 0

D

4x2+3y225=04x^2 -+3y^2 - 25 = 0

Answer

4x23y236=04x^2 - 3y^2 - 36 = 0

Explanation

Solution

We have a=3a = 3 and b2a=4b2=12\frac{b^{2}}{a} = 4 \Rightarrow b^{2} = 12
Hence, the equation of the hyperbola is
x29y212=1\frac{x^{2}}{9}-\frac{y^{2}}{12} = 1
4x23y2=364x23y236=0\Rightarrow 4x^{2} - 3y^{2} = 36 \Rightarrow 4x^{2} - 3y^{2} - 36 = 0