Solveeit Logo

Question

Question: The equation of the hyperbola whose foci are (6, 5), (–4, 5) and eccentricity \(\frac{5}{4}\) is...

The equation of the hyperbola whose foci are (6, 5), (–4, 5) and eccentricity 54\frac{5}{4} is

A

(x1)216(y5)29\frac{(x - 1)^{2}}{16} - \frac{(y - 5)^{2}}{9}= 1

B

x216y29\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1

C

(x1)216(y5)29\frac{(x - 1)^{2}}{16} - \frac{(y - 5)^{2}}{9} = –1

D

None of these

Answer

(x1)216(y5)29\frac{(x - 1)^{2}}{16} - \frac{(y - 5)^{2}}{9}= 1

Explanation

Solution

Here S1 ≡ ( 6, 5); S2 ≡ (–4, 5) , e = 5/ 4, so that S1S2 = 10 ⇒ 2ae = 10 ⇒ a = 4.

And b2 = a2(e2 – 1) = 16(25161)\left( \frac{25}{16} - 1 \right) = 9.

Centre of the curve is (1, 5) ⇒ Equation of required hyperbola is;

(x1)216(y5)29=1\frac{(x - 1)^{2}}{16} - \frac{(y - 5)^{2}}{9} = 1.