Solveeit Logo

Question

Question: The equation of the ellipse whose vertices are (-4, 3), (8, 3) and whose eccentricity is 5/6 is...

The equation of the ellipse whose vertices are (-4, 3), (8, 3) and whose eccentricity is 5/6 is

A

(x+2)236+(y+3)211=1\frac{(x + 2)^{2}}{36} + \frac{(y + 3)^{2}}{11} = 1

B

(x2)236+(y+3)211=1\frac{(x - 2)^{2}}{36} + \frac{(y + 3)^{2}}{11} = 1

C

x236+y211=1\frac{x^{2}}{36} + \frac{y^{2}}{11} = 1

D

(x2)236+(y3)211=1\frac{(x - 2)^{2}}{36} + \frac{(y - 3)^{2}}{11} = 1

Answer

(x2)236+(y3)211=1\frac{(x - 2)^{2}}{36} + \frac{(y - 3)^{2}}{11} = 1

Explanation

Solution

Given A = (8, 3) A’ = (-4, 3)

∴ Major axis parallel to x-axis.

AA’ = 12 = 2a ⇒ a = 6

Centre = (α, β) = mid point of AA’ = (2, 3)

Given e =5/6.

a2b2a2=2536\frac{a^{2} - b^{2}}{a^{2}} = \frac{25}{36} ⇒ b = 11\sqrt{11}

∴ Required equation of ellipse is (xα)2a2+(yβ)2b2=1\frac{(x - \alpha)^{2}}{a^{2}} + \frac{(y - \beta)^{2}}{b^{2}} = 1 ie., (x2)236+(y3)211=1\frac{(x - 2)^{2}}{36} + \frac{(y - 3)^{2}}{11} = 1