Solveeit Logo

Question

Question: The equation of the ellipse whose centre is (2,3), vertex is (5,3) the length of major axis is 6 and...

The equation of the ellipse whose centre is (2,3), vertex is (5,3) the length of major axis is 6 and minor axis is 4 is

A

(x2)296mu+6mu(y3)24\frac{(x - 2)^{2}}{9}\mspace{6mu} + \mspace{6mu}\frac{(y - 3)^{2}}{4} = 1

B

(x2)246mu+6mu(y3)29\frac{(x - 2)^{2}}{4}\mspace{6mu} + \mspace{6mu}\frac{(y - 3)^{2}}{9} = 1

C

(x+2)296mu+6mu(y+3)24\frac{(x + 2)^{2}}{9}\mspace{6mu} + \mspace{6mu}\frac{(y + 3)^{2}}{4} = 1

D

(x+2)246mu+6mu(y+3)29\frac{(x + 2)^{2}}{4}\mspace{6mu} + \mspace{6mu}\frac{(y + 3)^{2}}{9} = 1

Answer

(x2)296mu+6mu(y3)24\frac{(x - 2)^{2}}{9}\mspace{6mu} + \mspace{6mu}\frac{(y - 3)^{2}}{4} = 1

Explanation

Solution

Since centre = (2, 3) = (α, β), vertex = (5, 3) the major axis is parallel to x-axis.

Given 2a = 6 ⇒ a = 3

2b = 4 ⇒ b = 2

∴ The equation of ellipse is (xα)2a2+(yβ)2b2=1\frac{(x - \alpha)^{2}}{a^{2}} + \frac{(y - \beta)^{2}}{b^{2}} = 1

(x2)29+(y3)24=1\frac{(x - 2)^{2}}{9} + \frac{(y - 3)^{2}}{4} = 1