Solveeit Logo

Question

Question: The equation of the directrix of the parabola \(y ^ { 2 } + 4 y + 4 x + 2 = 0\)is...

The equation of the directrix of the parabola y2+4y+4x+2=0y ^ { 2 } + 4 y + 4 x + 2 = 0is

A

x=1x = - 1

B

x=1x = 1

C

x=32x = \frac { - 3 } { 2 }

D

x=32x = \frac { 3 } { 2 }

Answer

x=32x = \frac { 3 } { 2 }

Explanation

Solution

Here, y2+4y+4+4x2=0y ^ { 2 } + 4 y + 4 + 4 x - 2 = 0 or (y+2)2=4(x12)( y + 2 ) ^ { 2 } = - 4 \left( x - \frac { 1 } { 2 } \right)

Let y+2=Yy + 2 = Y , 12x=X\frac { 1 } { 2 } - x = X. Then the parabola is Y2=4XY ^ { 2 } = 4 X.

∴ The directrix is X+1=0X + 1 = 0 or 12x+1=0\frac { 1 } { 2 } - x + 1 = 0 ,

x=32x = \frac { 3 } { 2 }