Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The equation of the curve passing through the point (a,1a)\left(a, -\frac{1}{a}\right) and satisfying the differential equation yxdydx=a(y2+dydx)y-x \frac{dy}{dx}=a\left(y^{2}+\frac{dy}{dx}\right) is

A

(x+a)(1+ay)=4a2y(x+ a)(1+a y)=-4 a^{2} y

B

(x+a)(1ay)=4a2y(x+ a)(1-a y)=4 a^{2} y

C

(x+a)(1ay)=4a2y(x+ a)(1-a y)=-4 a^{2} y

D

None of these

Answer

(x+a)(1ay)=4a2y(x+ a)(1-a y)=-4 a^{2} y

Explanation

Solution

We have yxdydx=a(y2+dydx)y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)
ydxxdy=ay2dx+ady\Rightarrow y d x-x d y=a y^{2} d x+ a d y
y(1ay)dx=(x+a)dy\Rightarrow y(1-a y) d x=(x +a) d y
dxx+adyy(1ay)=0\Rightarrow \frac{d x}{x+a}-\frac{d y}{y(1-a y)}=0
Integrating, we get
log(x+a)logy+log(1ay)=logC\log (x +a)-\log y+\log (1-a y)=\log C
or log(a+x)(1ay)y=logC\log \frac{(a+ x)(1-a y)}{y}=\log C
i.e.(x+a)(1ay)=Cy(x +a)(1-a y)=C y
Since the curve passes through (a,1a)\left(a,-\frac{1}{a}\right)
2a×(1+1)=Ca\therefore 2 a \times(1+1)=-\frac{C}{a}
i.e C=4a2C=-4 a^{2}
So, (x+a)(1ay)=4a2y(x+ a)(1-a y)=-4 a^{2} y