Solveeit Logo

Question

Mathematics Question on Parabola

The equation of the common tangent with positive slope to the parabola y2=83xy^{2}=8\sqrt{3x} and the hyperbola 4x2y2=44x^2 - y^2 = 4 is

A

y=6x+2y=\sqrt{6}\,x+\sqrt{2}

B

y=6x2y=\sqrt{6}\,x-\sqrt{2}

C

y=3x+2y=\sqrt{3}\,x+\sqrt{2}

D

y=3x2y=\sqrt{3}\,x-\sqrt{2}

Answer

y=6x+2y=\sqrt{6}\,x+\sqrt{2}

Explanation

Solution

Equation of tangent in slope form of parabola y2=83xy^{2}=8 \sqrt{3} x is
y=mx+c...(i)y=m x+c\,\,\,...(i)
where,c=amc =\frac{a}{m}
c=23m...(ii)\therefore c =\frac{2 \sqrt{3}}{m}\,\,\,...(ii)
Also, tangent to the hyperbola
4x2y2=44 x^{2}-y^{2}=4
or x21y24=1\frac{x^{2}}{1}-\frac{y^{2}}{4}=1 is
c2=a2m2b2c^{2}=a^{2} m^{2}-b^{2}
c2=1m24c^{2}=1 m^{2}-4
(23m)2=m24\Rightarrow \left(\frac{2 \sqrt{3}}{m}\right)^{2}=m^{2}-4 \,\,\, [from E (ii)]
12m2=m24\Rightarrow \frac{12}{m^{2}}=m^{2}-4
m44m212=0\Rightarrow m^{4}-4 m^{2}-12=0
m46m2+2m212=0\Rightarrow m^{4}-6 m^{2}+2 m^{2}-12=0
m2(m26)+2(m26)=0\Rightarrow m^{2}\left(m^{2}-6\right)+2\left(m^{2}-6\right)=0
(m2+2)(m26)=0\Rightarrow \left(m^{2}+2\right)\left(m^{2}-6\right)=0
m26=0\Rightarrow m^{2}-6=0 and m2+20m^{2}+2 \neq 0
m2=6\Rightarrow m^{2}=6
m=±6\Rightarrow m=\pm \sqrt{6}
i.e., m=6m=\sqrt{6} as mm is positive slope.
\therefore From E (i),
y=6x+236y=\sqrt{6} x+\frac{2 \sqrt{3}}{\sqrt{6}}
y=6x+2\Rightarrow y=\sqrt{6} x+\sqrt{2}