Question
Mathematics Question on Parabola
The equation of the common tangent with positive slope to the parabola y2=83x and the hyperbola 4x2−y2=4 is
A
y=6x+2
B
y=6x−2
C
y=3x+2
D
y=3x−2
Answer
y=6x+2
Explanation
Solution
Equation of tangent in slope form of parabola y2=83x is
y=mx+c...(i)
where,c=ma
∴c=m23...(ii)
Also, tangent to the hyperbola
4x2−y2=4
or 1x2−4y2=1 is
c2=a2m2−b2
c2=1m2−4
⇒(m23)2=m2−4 [from E (ii)]
⇒m212=m2−4
⇒m4−4m2−12=0
⇒m4−6m2+2m2−12=0
⇒m2(m2−6)+2(m2−6)=0
⇒(m2+2)(m2−6)=0
⇒m2−6=0 and m2+2=0
⇒m2=6
⇒m=±6
i.e., m=6 as m is positive slope.
∴ From E (i),
y=6x+623
⇒y=6x+2