Solveeit Logo

Question

Question: The equation of the circle with centre on x-axis, radius 5 and passing through the point (2, 3), is....

The equation of the circle with centre on x-axis, radius 5 and passing through the point (2, 3), is.

A

x2+y2+4x21=0x ^ { 2 } + y ^ { 2 } + 4 x - 21 = 0

B

x2+y2+4x+21=0x ^ { 2 } + y ^ { 2 } + 4 x + 21 = 0

C

x2+y24x21=0x ^ { 2 } + y ^ { 2 } - 4 x - 21 = 0

D

x2+y2+5x21=0x ^ { 2 } + y ^ { 2 } + 5 x - 21 = 0

Answer

x2+y2+4x21=0x ^ { 2 } + y ^ { 2 } + 4 x - 21 = 0

Explanation

Solution

Let centre be (g,0)( - g , 0 ), then g2c=5c=g225\sqrt { g ^ { 2 } - c } = 5 \Rightarrow c = g ^ { 2 } - 25

Also it passes through (2, 3), therefore

13+4g+g225=0g=6,213 + 4 g + g ^ { 2 } - 25 = 0 \Rightarrow g = - 6,2

Hence the equations are x2+y212x+11=0x ^ { 2 } + y ^ { 2 } - 12 x + 11 = 0 and

x2+y2+4x21=0x ^ { 2 } + y ^ { 2 } + 4 x - 21 = 0.