Solveeit Logo

Question

Question: The equation of the circle whose diameter lies on \(2 x + 3 y = 3\)and \(16 x - y = 4\) which passes...

The equation of the circle whose diameter lies on 2x+3y=32 x + 3 y = 3and 16xy=416 x - y = 4 which passes through (4,6) is.

A

5(x2+y2)3x8y=2005 \left( x ^ { 2 } + y ^ { 2 } \right) - 3 x - 8 y = 200

B

x2+y24x8y=200x ^ { 2 } + y ^ { 2 } - 4 x - 8 y = 200

C

5(x2+y2)4x=2005 \left( x ^ { 2 } + y ^ { 2 } \right) - 4 x = 200

D

x2+y2=40x ^ { 2 } + y ^ { 2 } = 40

Answer

5(x2+y2)3x8y=2005 \left( x ^ { 2 } + y ^ { 2 } \right) - 3 x - 8 y = 200

Explanation

Solution

Let point (x1,y1)\left( x _ { 1 } , y _ { 1 } \right) on the diameter.

2x1+3y1=3\Rightarrow 2 x _ { 1 } + 3 y _ { 1 } = 3 ….(i)

16x1y1=416 x _ { 1 } - y _ { 1 } = 4 ….(ii)

On solving (i) and (ii), we get centre,

x1=310,y1=45\Rightarrow x _ { 1 } = \frac { 3 } { 10 } , y _ { 1 } = \frac { 4 } { 5 }

\therefore Equation of circle,

(xx1)2+(yy1)2=r2(x310)2+(y45)2=r2\left( x - x _ { 1 } \right) ^ { 2 } + \left( y - y _ { 1 } \right) ^ { 2 } = r ^ { 2 } \Rightarrow \left( x - \frac { 3 } { 10 } \right) ^ { 2 } + \left( y - \frac { 4 } { 5 } \right) ^ { 2 } = r ^ { 2 }

\bullet \bullet Circle passes through (4, 6).

So, r2=(3710)2+(265)2r2=4073100r ^ { 2 } = \left( \frac { 37 } { 10 } \right) ^ { 2 } + \left( \frac { 26 } { 5 } \right) ^ { 2 } \Rightarrow r ^ { 2 } = \frac { 4073 } { 100 }

\therefore Required equation of circle is

(x310)2+(y45)2=4073100\left( x - \frac { 3 } { 10 } \right) ^ { 2 } + \left( y - \frac { 4 } { 5 } \right) ^ { 2 } = \frac { 4073 } { 100 }

5(x2+y2)3x8y=200\Rightarrow 5 \left( x ^ { 2 } + y ^ { 2 } \right) - 3 x - 8 y = 200.