Solveeit Logo

Question

Question: The equation of the circle whose centre is (1, –3) and which touches the line \(2 x - y - 4 = 0\) ...

The equation of the circle whose centre is (1, –3) and which touches the line 2xy4=02 x - y - 4 = 0 is.

A

5x2+5y210x+30y+49=05 x ^ { 2 } + 5 y ^ { 2 } - 10 x + 30 y + 49 = 0

B

5x2+5y2+10x30y+49=05 x ^ { 2 } + 5 y ^ { 2 } + 10 x - 30 y + 49 = 0

C

5x2+5y210x+30y49=05 x ^ { 2 } + 5 y ^ { 2 } - 10 x + 30 y - 49 = 0

D

None of these

Answer

5x2+5y210x+30y+49=05 x ^ { 2 } + 5 y ^ { 2 } - 10 x + 30 y + 49 = 0

Explanation

Solution

Radius of circle is 2+345=15\left| \frac { 2 + 3 - 4 } { \sqrt { 5 } } \right| = \frac { 1 } { \sqrt { 5 } }

Therefore, equation is (x1)2+(y+3)2=15( x - 1 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = \frac { 1 } { 5 }

or x2+y22x+6y+1+9=15x ^ { 2 } + y ^ { 2 } - 2 x + 6 y + 1 + 9 = \frac { 1 } { 5 }

or 5x2+5y210x+30y+49=05 x ^ { 2 } + 5 y ^ { 2 } - 10 x + 30 y + 49 = 0.