Solveeit Logo

Question

Question: The equation of the circle which touches x-axis at (3, 0) and passes through (1, 4) is given by....

The equation of the circle which touches x-axis at (3, 0) and passes through (1, 4) is given by.

A

x2+y26x5y+9=0x ^ { 2 } + y ^ { 2 } - 6 x - 5 y + 9 = 0

B

x2+y2+6x+5y9=0x ^ { 2 } + y ^ { 2 } + 6 x + 5 y - 9 = 0

C

x2+y26x+5y9=0x ^ { 2 } + y ^ { 2 } - 6 x + 5 y - 9 = 0

D

x2+y2+6x5y+9=0x ^ { 2 } + y ^ { 2 } + 6 x - 5 y + 9 = 0

Answer

x2+y26x5y+9=0x ^ { 2 } + y ^ { 2 } - 6 x - 5 y + 9 = 0

Explanation

Solution

k2=4+(k4)2k=52k ^ { 2 } = 4 + ( k - 4 ) ^ { 2 } \Rightarrow k = \frac { 5 } { 2 }

Hence required equation of circle is

(x3)2+(y52)2=(52)2x2+y26x5y+9=0( x - 3 ) ^ { 2 } + \left( y - \frac { 5 } { 2 } \right) ^ { 2 } = \left( \frac { 5 } { 2 } \right) ^ { 2 } \Rightarrow x ^ { 2 } + y ^ { 2 } - 6 x - 5 y + 9 = 0

Trick : Only (1) passes through (1, 4).