Solveeit Logo

Question

Question: The equation of the circle which touches \(x-axis\) at \(\left( 3,0 \right)\) and passes through \(\...

The equation of the circle which touches xaxisx-axis at (3,0)\left( 3,0 \right) and passes through (1,4)\left( 1,4 \right) is given by
(a) x2+y26x5y+9=0{{x}^{2}}+{{y}^{2}}-6x-5y+9=0
(b) x2+y2+6x+5y9=0{{x}^{2}}+{{y}^{2}}+6x+5y-9=0
(c) x2+y26x+5y9=0{{x}^{2}}+{{y}^{2}}-6x+5y-9=0
(d) x2+y2+6x5y+9=0{{x}^{2}}+{{y}^{2}}+6x-5y+9=0

Explanation

Solution

Hint: From the equation of circle, find the xinterceptx-\text{intercept} by putting y=0y=0. Substitute the values in the equation of the circle and put (x,y)=(3,0) and (1,4)\left( x,y \right)=\left( 3,0 \right)\ and\ \left( 1,4 \right) as it passes through the circle and get the value of the centres of the circle.

Complete step by step answer:
We know that equation of the circle,
x2+y2+2gx+2fy+c=0.......................(1){{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0.......................\left( 1 \right)
Here, the centre of circle =(g,f)=\left( -g,-f \right)
We need to find the xx- intercept of the circle.

Consider the figure drawn.
Let ABAB be the intercept made by the given circle on xaxisx-axis.
Since on xaxis,y=0x-axis,y=0 .
x\therefore x- coordinate of the points
AA and BBare the root of the equation x2+2gx+c=0.......................(2){{x}^{2}}+2gx+c=0.......................\left( 2 \right)
\because Substituting y=0y=0 in equation (1) to obtain equation (2)
Let x1 and x2{{x}_{1}}\text{ and }{{x}_{2}} be the x-coordinates of points A and BA\text{ and }B respectively
Then, x1 and x2{{x}_{1}}\text{ and }{{x}_{2}}also the roots of the equation x2+2gx+c=0{{x}^{2}}+2gx+c=0
x1+x2=2g x1.x2=c Where, x1=g,x2=g \begin{aligned} & \therefore {{x}_{1}}+{{x}_{2}}=-2g \\\ & {{x}_{1}}.{{x}_{2}}=c \\\ & \because Where,\text{ }{{x}_{1}}=-g,{{x}_{2}}=-g \\\ \end{aligned}
X-coordinates
Clearly the intercept on xaxis=ABx-axis=AB
=x2x1=(x2x1)2={{x}_{2}}-{{x}_{1}}=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}}
We know (a2b2)=(ab)(a+b) or (a2b2)=(a+b)24ab\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\text{ or }\left( {{a}^{2}}-{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-4ab
(x1+x2)24x1x2 =(2g)24c =4g24c =4(g2c) =2g2c \begin{aligned} & \sqrt{{{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-4{{x}_{1}}{{x}_{2}}} \\\ & =\sqrt{{{\left( -2g \right)}^{2}}-4c} \\\ & =\sqrt{4{{g}^{2}}-4c} \\\ & =\sqrt{4\left( {{g}^{2}}-c \right)} \\\ & =2\sqrt{{{g}^{2}}-c} \\\ \end{aligned}
\therefore We got the xx- intercept made by circle on the xaxisx-axis
=2g2c.............(3)=2\sqrt{{{g}^{2}}-c}.............\left( 3 \right)
Now, the circle touches xaxisx-axis
2g2c=0 c=g2.............(4) \begin{aligned} & 2\sqrt{{{g}^{2}}-c}=0 \\\ & \therefore c={{g}^{2}}.............\left( 4 \right) \\\ \end{aligned}
Substitute the value of equation (4) in equation (1)
x2+y2+2gx+2fy+g2=0................(5){{x}^{2}}+{{y}^{2}}+2gx+2fy+{{g}^{2}}=0................\left( 5 \right)
Given that the circle passes through (3,0)\left( 3,0 \right) and (1,4)\left( 1,4 \right)
Consider point (x,y)=(3,0)\left( x,y \right)=\left( 3,0 \right) and substitute in equation (5)
32+02+2g×3+0+g2=0\therefore {{3}^{2}}+{{0}^{2}}+2g\times 3+0+{{g}^{2}}=0
9+6g+g2=0\Rightarrow 9+6g+{{g}^{2}}=0
Consider the quadratic equation g2+6g+9=0.........(6){{g}^{2}}+6g+9=0.........\left( 6 \right)
By using the quadratic formula, we can solve this equation (6)
It is of the form ax2+bx+c=0a{{x}^{2}}+bx+c=0
And the equation we got g2+6g+9=0{{g}^{2}}+6g+9=0
[i.e.,x=g]\left[i.e.,x=g \right]
From the equation we get the values of a,b,ca,b,c as
a=1,b=6,c=9a=1,b=6,c=9
Put the values in the quadratic formula to obtain the roots
b±b24ac2a =6±364×1×92×1 =6±36362 =6±02=62=3 \begin{aligned} & \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\\ & =\dfrac{-6\pm \sqrt{36-4\times 1\times 9}}{2\times 1} \\\ & =\dfrac{-6\pm \sqrt{36-36}}{2} \\\ & =\dfrac{-6\pm 0}{2}=\dfrac{-6}{2}=-3 \\\ \end{aligned}
g=3\therefore g=-3
By substituting (x,y)=(1,4)\left( x,y \right)=\left( 1,4 \right) in equation (5)
x2+y2+2gx+2fy+g2=0{{x}^{2}}+{{y}^{2}}+2gx+2fy+{{g}^{2}}=0
11+42+2×(3)×1+2f×4+(3)2=0 1+166+8f+9=0 20+8f=0 f=52 \begin{aligned} & {{1}^{1}}+{{4}^{2}}+2\times \left( -3 \right)\times 1+2f\times 4+{{\left( -3 \right)}^{2}}=0 \\\ & 1+16-6+8f+9=0 \\\ & \Rightarrow 20+8f=0 \\\ & \therefore f=\dfrac{-5}{2} \\\ \end{aligned}
Hence the equation of the circle become,
x2+y2+2gx+2fy+c=0 x2+y2+2(3)x+2(52)y+9=0 x2+y26x5y+9=0 \begin{aligned} & {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0 \\\ & {{x}^{2}}+{{y}^{2}}+2\left( -3 \right)x+2\left( \dfrac{-5}{2} \right)y+9=0 \\\ & \Rightarrow {{x}^{2}}+{{y}^{2}}-6x-5y+9=0 \\\ \end{aligned}
Hence the correct answer is option (a).

Note: (i) In a question like you should be careful with the calculation part as not to mix up the sign.
The solutions options are similar and if you get the sign wrong. You might get the wrong answer and thus choose the wrong solution.
(ii) The intercept is the crossing point, and the xx - intercept of a graph refers to the point at which the equation crosses the xaxisx-axis of the coordinate plane.