Solveeit Logo

Question

Question: The equation of the circle which touches the circle \(x ^ { 2 } + y ^ { 2 } - 6 x + 6 y + 17 = 0\) e...

The equation of the circle which touches the circle x2+y26x+6y+17=0x ^ { 2 } + y ^ { 2 } - 6 x + 6 y + 17 = 0 externally and to which the lines x23xy3x+9y=0x ^ { 2 } - 3 x y - 3 x + 9 y = 0are normals, is

A

x2+y26x2y1=0x ^ { 2 } + y ^ { 2 } - 6 x - 2 y - 1 = 0

B

x2+y2+6x+2y+1=0x ^ { 2 } + y ^ { 2 } + 6 x + 2 y + 1 = 0

C

x2+y26x6y+1=0x ^ { 2 } + y ^ { 2 } - 6 x - 6 y + 1 = 0

D

x2+y26x2y+1=0x ^ { 2 } + y ^ { 2 } - 6 x - 2 y + 1 = 0

Answer

x2+y26x2y+1=0x ^ { 2 } + y ^ { 2 } - 6 x - 2 y + 1 = 0

Explanation

Solution

Joint equations of normals are x23xy3x+9y=0x ^ { 2 } - 3 x y - 3 x + 9 y = 0

x(x3y)3(x3y)=0x ( x - 3 y ) - 3 ( x - 3 y ) = 0 \Rightarrow (x3)(x3y)=0( x - 3 ) ( x - 3 y ) = 0

\therefore Given normals are x3=0x - 3 = 0 and x3y=0x - 3 y = 0, which intersect at centre of circle whose coordinates are (3, 1).

The given circle is C1=(3,3),r1=1C _ { 1 } = ( 3 , - 3 ) , \quad r _ { 1 } = 1;

If the two circles touch externally, then C1C2=r1+r2C _ { 1 } C _ { 2 } = r _ { 1 } + r _ { 2 }

\Rightarrow 4=1+r2r2=34 = 1 + r _ { 2 } \Rightarrow r _ { 2 } = 3

\thereforeEquation of required circle is (x3)2+(y1)2=(3)2( x - 3 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = ( 3 ) ^ { 2 }

x2+y26x2y+1=0x ^ { 2 } + y ^ { 2 } - 6 x - 2 y + 1 = 0