Solveeit Logo

Question

Question: The equation of the circle which touches both axes and whose centre is \(\left( x _ { 1 } , y _ { 1 ...

The equation of the circle which touches both axes and whose centre is (x1,y1)\left( x _ { 1 } , y _ { 1 } \right) is.

A

x2+y2+2x1(x+y)+x12=0x ^ { 2 } + y ^ { 2 } + 2 x _ { 1 } ( x + y ) + x _ { 1 } ^ { 2 } = 0

B

x2+y22x1(x+y)+x12=0x ^ { 2 } + y ^ { 2 } - 2 x _ { 1 } ( x + y ) + x _ { 1 } ^ { 2 } = 0

C

x2+y2=x12+y12x ^ { 2 } + y ^ { 2 } = x _ { 1 } ^ { 2 } + y _ { 1 } ^ { 2 }

D

x2+y2+2xx1+2yy1=0x ^ { 2 } + y ^ { 2 } + 2 x x _ { 1 } + 2 y y _ { 1 } = 0

Answer

x2+y22x1(x+y)+x12=0x ^ { 2 } + y ^ { 2 } - 2 x _ { 1 } ( x + y ) + x _ { 1 } ^ { 2 } = 0

Explanation

Solution

The equation will be

(xx1)2+(yy1)2=r2\left( x - x _ { 1 } \right) ^ { 2 } + \left( y - y _ { 1 } \right) ^ { 2 } = r ^ { 2 }

As the circle touches both the axes,

x1=y1=rx _ { 1 } = y _ { 1 } = r

(xx1)2+(yx1)2=x12\left( x - x _ { 1 } \right) ^ { 2 } + \left( y - x _ { 1 } \right) ^ { 2 } = x _ { 1 } ^ { 2 }x2+y22x1(x+y)+x12=0x ^ { 2 } + y ^ { 2 } - 2 x _ { 1 } ( x + y ) + x _ { 1 } ^ { 2 } = 0.