Solveeit Logo

Question

Question: The equation of the circle which passes through the points \(( 3 , - 2 )\) and \(( - 2,0 )\) and c...

The equation of the circle which passes through the points (3,2)( 3 , - 2 ) and (2,0)( - 2,0 ) and centre lies on the line 2xy=32 x - y = 3, is.

A

x2+y23x12y+2=0x ^ { 2 } + y ^ { 2 } - 3 x - 12 y + 2 = 0

B

x2+y23x+12y+2=0x ^ { 2 } + y ^ { 2 } - 3 x + 12 y + 2 = 0

C

x2+y2+3x+12y+2=0x ^ { 2 } + y ^ { 2 } + 3 x + 12 y + 2 = 0

D

None of these

Answer

x2+y2+3x+12y+2=0x ^ { 2 } + y ^ { 2 } + 3 x + 12 y + 2 = 0

Explanation

Solution

Let centre be (h, k), then

(h3)2+(k+2)2=(h+2)2+k2( h - 3 ) ^ { 2 } + ( k + 2 ) ^ { 2 } = ( h + 2 ) ^ { 2 } + k ^ { 2 } 10h4k9=0\Rightarrow 10 h - 4 k - 9 = 0

Also the centre lies on the given line, so 2hk=32 h - k = 3 .

On solving k=6,h=32k = - 6 , h = - \frac { 3 } { 2 }

Radius is (h3)2+(k+2)2=1454( h - 3 ) ^ { 2 } + ( k + 2 ) ^ { 2 } = \frac { 145 } { 4 } , which is true for option (3) only.