Solveeit Logo

Question

Question: The equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on...

The equation of the circle which passes through the points

(2, 3) and (4, 5) and the centre lies on the straight line y4x+3=0y - 4 x + 3 = 0, is.

A

x2+y2+4x10y+25=0x ^ { 2 } + y ^ { 2 } + 4 x - 10 y + 25 = 0

B

x2+y24x10y+25=0x ^ { 2 } + y ^ { 2 } - 4 x - 10 y + 25 = 0

C

x2+y24x10y+16=0x ^ { 2 } + y ^ { 2 } - 4 x - 10 y + 16 = 0

D

x2+y214y+8=0x ^ { 2 } + y ^ { 2 } - 14 y + 8 = 0

Answer

x2+y24x10y+25=0x ^ { 2 } + y ^ { 2 } - 4 x - 10 y + 25 = 0

Explanation

Solution

First find the centre. Let centre be (h, k), then

(h2)2+(k3)2=(h4)2+(k5)2\sqrt { ( h - 2 ) ^ { 2 } + ( k - 3 ) ^ { 2 } } = \sqrt { ( h - 4 ) ^ { 2 } + ( k - 5 ) ^ { 2 } } ….(i)

and k4h+3=0k - 4 h + 3 = 0 ….(ii)

From (i), we get 4h6k+8h+10k=16+2549- 4 h - 6 k + 8 h + 10 k = 16 + 25 - 4 - 9

or 4h+4k28=04 h + 4 k - 28 = 0 or h+k7=0h + k - 7 = 0 ….(iii)

From (iii) and (ii), we get (h, k) as (2, 5). Hence centre is

(2, 5) and radius is 2. Now find the equation of circle.

Trick : Obviously, circle x2+y24x10y+25=0x ^ { 2 } + y ^ { 2 } - 4 x - 10 y + 25 = 0

passes through (2, 3) and (4, 5).