Solveeit Logo

Question

Question: The equation of the circle, which passes through the point (2a, 0) and whose radical axis is \(x = ...

The equation of the circle, which passes through the point (2a, 0) and whose radical axis is x=a2x = \frac { a } { 2 } with respect to the circle x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } , will be

A

x2+y22ax=0x ^ { 2 } + y ^ { 2 } - 2 a x = 0

B

x2+y2+2ax=0x ^ { 2 } + y ^ { 2 } + 2 a x = 0

C

x2+y2+2ay=0x ^ { 2 } + y ^ { 2 } + 2 a y = 0

D

x2+y22ay=0x ^ { 2 } + y ^ { 2 } - 2 a y = 0

Answer

x2+y22ax=0x ^ { 2 } + y ^ { 2 } - 2 a x = 0

Explanation

Solution

Equation of radical axis is x=a2x = \frac { a } { 2 } 2xa=0\Rightarrow \quad 2 x - a = 0

Equation of required circle is x2+y2a2+λ(2xa)=0x ^ { 2 } + y ^ { 2 } - a ^ { 2 } + \lambda ( 2 x - a ) = 0

\bullet \bullet It is passes through the point (2a, 0) ,

\therefore 4a2a2+λ(4aa)=04 a ^ { 2 } - a ^ { 2 } + \lambda ( 4 a - a ) = 0

\therefore Equation of circle is x2+y2a22ax+a2=0x ^ { 2 } + y ^ { 2 } - a ^ { 2 } - 2 a x + a ^ { 2 } = 0

x2+y22ax=0\Rightarrow x ^ { 2 } + y ^ { 2 } - 2 a x = 0