Solveeit Logo

Question

Question: The equation of the circle through the points of intersection of the circles \(x ^ { 2 } + y ^ { 2 }...

The equation of the circle through the points of intersection of the circles x2+y26x+2y+4=0x ^ { 2 } + y ^ { 2 } - 6 x + 2 y + 4 = 0

y=xy = x

A

7x2+7y2+10x10y12=07 x ^ { 2 } + 7 y ^ { 2 } + 10 x - 10 y - 12 = 0

B

7x2+7y210x10y12=07 x ^ { 2 } + 7 y ^ { 2 } - 10 x - 10 y - 12 = 0

C

7x2+7y210x+10y12=07 x ^ { 2 } + 7 y ^ { 2 } - 10 x + 10 y - 12 = 0

D

7x2+7y2+10x+10y+12=07 x ^ { 2 } + 7 y ^ { 2 } + 10 x + 10 y + 12 = 0

Answer

7x2+7y210x10y12=07 x ^ { 2 } + 7 y ^ { 2 } - 10 x - 10 y - 12 = 0

Explanation

Solution

Equation of any circle through the points of intersection of given circles is

(x2+y26x+2y+4)+λ(x2+y2+2x4y6)=0\left( x ^ { 2 } + y ^ { 2 } - 6 x + 2 y + 4 \right) + \lambda \left( x ^ { 2 } + y ^ { 2 } + 2 x - 4 y - 6 \right) = 0

\Rightarrow x2(1+λ)+y2(1+λ)2x(3λ)+2y(12λ)+(46λ)=0x ^ { 2 } ( 1 + \lambda ) + y ^ { 2 } ( 1 + \lambda ) - 2 x ( 3 - \lambda ) + 2 y ( 1 - 2 \lambda ) + ( 4 - 6 \lambda ) = 0or, x2+y22x(3λ)(1+λ)+2y(12λ)(1+λ)+(46λ)(1+λ)=0x ^ { 2 } + y ^ { 2 } - \frac { 2 x ( 3 - \lambda ) } { ( 1 + \lambda ) } + \frac { 2 y ( 1 - 2 \lambda ) } { ( 1 + \lambda ) } + \frac { ( 4 - 6 \lambda ) } { ( 1 + \lambda ) } = 0 …..(i)

Its centre ={3λ1+λ,2λ11+λ}= \left\{ \frac { 3 - \lambda } { 1 + \lambda } , \frac { 2 \lambda - 1 } { 1 + \lambda } \right\} lies on the line y = x .

Then 2λ11+λ=3λ1+λ\frac { 2 \lambda - 1 } { 1 + \lambda } = \frac { 3 - \lambda } { 1 + \lambda }

{λ1}\{ \because \quad \lambda \neq - 1 \}

\Rightarrow 3λ=43 \lambda = 4 λ=43\Rightarrow \lambda = \frac { 4 } { 3 }

Substituting the value of λ=43\lambda = \frac { 4 } { 3 } in (i),

we get the required equation as

7x2+7y210x10y12=07 x ^ { 2 } + 7 y ^ { 2 } - 10 x - 10 y - 12 = 0