Solveeit Logo

Question

Question: The equation of the circle through the points of intersection of \(x ^ { 2 } + y ^ { 2 } - 1 = 0 , x...

The equation of the circle through the points of intersection of x2+y21=0,x2+y22x4y+1=0x ^ { 2 } + y ^ { 2 } - 1 = 0 , x ^ { 2 } + y ^ { 2 } - 2 x - 4 y + 1 = 0 and touching the line x+2y=0x + 2 y = 0 is

A

x2+y2+x+2y=0x ^ { 2 } + y ^ { 2 } + x + 2 y = 0

B

x2+y2x+20=0x ^ { 2 } + y ^ { 2 } - x + 20 = 0

C

x2+y2x2y=0x ^ { 2 } + y ^ { 2 } - x - 2 y = 0

D

2(x2+y2)x2y=02 \left( x ^ { 2 } + y ^ { 2 } \right) - x - 2 y = 0

Answer

x2+y2x2y=0x ^ { 2 } + y ^ { 2 } - x - 2 y = 0

Explanation

Solution

Family of circles is

x2+y22x4y+1+λ(x2+y21)=0x ^ { 2 } + y ^ { 2 } - 2 x - 4 y + 1 + \lambda \left( x ^ { 2 } + y ^ { 2 } - 1 \right) = 0 x2+y221+λx41+λy+1λ1+λ=0x ^ { 2 } + y ^ { 2 } - \frac { 2 } { 1 + \lambda } x - \frac { 4 } { 1 + \lambda } y + \frac { 1 - \lambda } { 1 + \lambda } = 0

Centre is [11+λ,21+λ]\left[ \frac { 1 } { 1 + \lambda } , \frac { 2 } { 1 + \lambda } \right] and radius

=(11+λ)2+(21+λ)2(1λ1+λ)=4+λ2(1+λ)2= \sqrt { \left( \frac { 1 } { 1 + \lambda } \right) ^ { 2 } + \left( \frac { 2 } { 1 + \lambda } \right) ^ { 2 } - \left( \frac { 1 - \lambda } { 1 + \lambda } \right) } = \sqrt { \frac { 4 + \lambda ^ { 2 } } { ( 1 + \lambda ) ^ { 2 } } }

Since it touches the line x+2y=0x + 2 y = 0

Hence Radius = perpendicular distance from centre to the line =11+λ+41+λ12+22= \left| \frac { \frac { 1 } { 1 + \lambda } + \frac { 4 } { 1 + \lambda } } { \sqrt { 1 ^ { 2 } + 2 ^ { 2 } } } \right|

=4+λ2(1+λ)2=4+λ21+λ= \sqrt { \frac { 4 + \lambda ^ { 2 } } { ( 1 + \lambda ) ^ { 2 } } } = \frac { \sqrt { 4 + \lambda ^ { 2 } } } { 1 + \lambda }

5=4+λ2\Rightarrow \quad \sqrt { 5 } = \sqrt { 4 + \lambda ^ { 2 } }

λ=±1\Rightarrow \lambda = \pm 1

λ=1\lambda = 1.

\therefore Equation of circle is x2+y2x2y=0x ^ { 2 } + y ^ { 2 } - x - 2 y = 0